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Abstract. We present a general parametrization of B± → π±K, π0K± and Bd → π0K, π∓K± decays,
taking into account both electroweak penguin and rescattering effects. This formalism allows – among
other things – a generalized implementation of the strategies that were recently proposed by Neubert and
Rosner to probe the CKM angle γ with the help of B± → π±K, π0K± decays. In particular, it allows us to
investigate the sensitivity of the extracted value of γ to the basic assumptions of their approach. We find
that certain rescattering processes may have an important impact and emphasize that additional hadronic
uncertainties may be due to non-factorizable SU(3)-breaking effects. The former can be controlled by using
SU(3) flavour symmetry arguments and additional experimental information provided by B± → K±K
modes. We propose a new strategy to probe the angle γ with the help of the neutral decays Bd → π0K,
π∓K±, which is theoretically cleaner than the B± → π±K, π0K± approach. Here rescattering processes
can be taken into account by just measuring the CP-violating observables of the decay Bd → π0KS. Finally,
we point out that an experimental analysis of Bs → K+K− modes would also be very useful to probe the
CKM angle γ, as well as electroweak penguins, and we critically compare the virtues and weaknesses of
the various approaches discussed in this paper. As a by-product, we point out a strategy to include the
electroweak penguins in the determination of the CKM angle α from B → ππ decays.

1 Introduction

In 1997, the CLEO collaboration reported the observa-
tion of several exclusive B-meson decays into two light
pseudoscalar mesons [1], which led to great excitement
in the B-physics community. In particular, the decays
B+ → π+K0, B0

d → π−K+ and their charge conjugates
received a lot of attention [2], since their observables may
provide useful information on the angle γ of the usual non-
squashed unitarity triangle of the Cabibbo–Kobayashi–
Maskawa matrix (CKM matrix) [3,4]. So far, only results
for the combined branching ratios

BR(B± → π±K)

≡ 1
2

[
BR(B+ → π+K0) + BR(B− → π−K0)

]
(1)

BR(Bd → π∓K±)

≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

]
(2)

have been published, with values at the 10−5 level and
large experimental uncertainties. As was pointed out in
[5], already these combined branching ratios may lead to
highly non-trivial constraints on γ, which become effective
if the ratio

R ≡ BR(Bd → π∓K±)
BR(B± → π±K)

(3)

is found to be smaller than 1. If we use the SU(2) isospin
symmetry of strong interactions and neglect certain rescat-

tering and electroweak penguin effects (for more sophisti-
cated strategies, taking into account also these effects, see
[6,7]), we obtain the following allowed range for γ [5]:

0◦ ≤ γ ≤ γ0 ∨ 180◦ − γ0 ≤ γ ≤ 180◦, (4)

where γ0 is given by

γ0 = arccos(
√

1 −R) . (5)

Unfortunately, the present data do not yet provide a def-
inite answer to the question of whether R < 1. The re-
sults reported by the CLEO collaboration in 1997 gave
R = 0.65 ± 0.40 [1], whereas a recent, preliminary update
yields R = 1.0 ± 0.4 [8]. A detailed study of the implica-
tions of (4) for the determination of the unitarity triangle
was performed in [9].

Last summer, the CLEO collaboration announced the
first observation of another B → πK decay, which is the
mode B± → π0K± [8]. Consequently, it is natural to
ask whether we could also obtain interesting information
on the angle γ with the help of this decay. In fact, sev-
eral years ago, Gronau, Rosner and London (GRL) pro-
posed an interesting strategy to determine γ, with the
help of the decays B+ → π0K+, B+ → π+K0, B+ →
π+π0 and their charge conjugates, by using the SU(3)
flavour symmetry of strong interactions [10] (see also [11]).
However, as was pointed out by Deshpande and He [12],
this elegant approach is unfortunately spoiled by elec-
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troweak penguins, which play an important role in sev-
eral non-leptonic B-meson decays because of the large
top-quark mass [13,14]. In the case of the mode B+ →
π0K+, electroweak penguins contribute both in “colour-
allowed” and in “colour-suppressed” form, whereas only
electroweak penguin topologies of the latter kind
contribute to the decays B+ → π+K0 and B0

d → π−K+.
Performing model calculations within the framework of
the “factorization” hypothesis, one finds that “colour-
suppressed” electroweak penguins play a negligible role
[15]. These crude estimates may, however, underestimate
the role of these topologies [4,16], which therefore repre-
sent an important limitation of the theoretical accuracy
of the strategies to probe the CKM angle γ with the help
of B± → π±K and Bd → π∓K± decays [2].

In [3,17], we proposed methods to obtain experimen-
tal insights into electroweak penguins with the help of
amplitude relations between the B → πK decays listed
above. Since it is possible to derive a transparent expres-
sion for the relevant electroweak penguin amplitude by
performing appropriate Fierz transformations of the elec-
troweak penguin operators and using the SU(3) flavour
symmetry [3] (see also [14]), the experimental determina-
tion of this amplitude would allow an interesting test of
the Standard Model. In two recent papers [18,19], Neubert
and Rosner used a more elaborate, but similar theoretical
input to calculate the electroweak penguin amplitude af-
fecting the GRL approach. In contrast to the B± → π±K,
Bd → π∓K± case, this electroweak penguin amplitude
can be fixed completely in the strict SU(3) limit, i.e. with-
out any unknown hadronic parameter. Employing the elec-
troweak penguin amplitude calculated this way, the com-
bined B± → π±K and B± → π0K± branching ratios may
imply interesting bounds on the CKM angle γ [18], and
the original GRL strategy, requiring the measurement of
a CP-violating asymmetry in B± → π0K±, is resurrected
[19].

In this paper, we point out that the general formulae to
probe the CKM angle γ, with the help of the decays B± →
π±K and Bd → π∓K± that were derived in [6], apply
also to the combination B± → π±K, π0K± of charged B
decays, as well as to the combination Bd → π0K, π∓K±
of neutral B decays, if straightforward replacements of
variables are performed. In this manner, the virtues and
weaknesses of the strategies proposed in [6,18,19], and of a
new one proposed here, can be systematically investigated
and compared with one another. Moreover, our formalism
allows us to investigate the sensitivity of the extracted
value of γ to the basic assumptions made in [18]. We find
that certain rescattering processes [16, 20–24] may have an
important impact and emphasize that additional hadronic
uncertainties may be due due to non-factorizable SU(3)-
breaking effects. Using the general formalism developed
here, the final-state-interaction effects can be taken into
account with the help of the strategies proposed in [6,7].

Concerning the impact of rescattering processes, the
neutral decays Bd → π0K, π∓K± offer theoretically
cleaner strategies to probe the CKM angle γ than the
charged modes B± → π±K, π0K±, as we will show in this

paper. The point is that the decay Bd → π0KS provides
an additional observable, which originates from mixing-
induced CP violation. If we use in addition the CP asym-
metry arising in the mode Bd → J/ψKS to fix the B0

d–
B0
d mixing phase, the rescattering processes can be in-

cluded completely. We also point out that an experimen-
tal analysis of the decay Bs → K+K− would offer – in
combination with the data provided by Bd → π∓K±,
B± → π±K and B± → π±π – several simple strategies
both to probe the CKM angle γ and to obtain insights
into electroweak penguins. Therefore, an accurate mea-
surement of the decay Bs → K+K−, which should be
feasible at “second-generation” B-decay experiments at
hadron machines, such as LHCb or BTeV, would be an
important goal.

The outline of this paper is as follows: in Sect. 2, we
present a general parametrization of the B → πK de-
cay amplitudes and observables, taking into account both
electroweak penguin and rescattering effects. In Sect. 3, we
recapitulate the B± → π±K, Bd → π∓K± strategies to
constrain and determine the CKM angle γ in the light of
the most recent CLEO data, and point out some interest-
ing features that were not emphasized in previous work.
In Sect. 4, we focus on strategies to probe γ with the help
of the charged decays B± → π±K, π0K±, while we turn
to a new approach, using the neutral modes Bd → π0K,
π∓K±, in Sect. 5. Several strategies to combine the ob-
servables of the Bu,d → πK modes with those of the decay
Bs → K+K− to determine the CKM angle γ and to probe
electroweak penguins are proposed in Sect. 6. Finally, the
conclusions are summarized in Sect. 7, where we also crit-
ically compare the virtues and weaknesses of the various
approaches discussed in this paper. In an appendix, we
present a by-product of our considerations, allowing us to
include electroweak penguin topologies in the determina-
tion of the CKM angle α from B → ππ decays.

2 Decay amplitudes and observables

In this section, we will closely follow [6] to parametrize
the decay amplitudes and observables of B± → π0K± and
Bd → π0K arising within the framework of the Standard
Model. Before turning to these modes, it will be instruc-
tive to recall certain features of the decays B± → π±K
and Bd → π∓K±, which were already discussed in detail
in [6].

2.1 The decays B± → π±K and Bd → π∓K±

In order to probe the CKM angle γ through these decays,
the central role is played by the following amplitude rela-
tion:

A(B+ → π+K0) +A(B0
d → π−K+) = − [

T + PC
ew

]
, (6)

which can be derived by using the SU(2) isospin symmetry
of strong interactions [25]. Here the amplitude T , which is
usually referred to as a “tree” amplitude, takes the form

T = |T |eiδT eiγ . (7)
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Owing to a subtlety in the implementation of the isospin
symmetry, the amplitude T does not only receive con-
tributions from colour-allowed b̄ → ūus̄ tree-diagram-like
topologies, but also from penguin and annihilation topolo-
gies [6,25]. On the other hand, the quantity PC

ew is due to
electroweak penguin contributions, which do not carry the
phase eiγ , and can be expressed as

PC
ew = − |PC

ew|eiδCew . (8)

Note that the remaining electroweak penguin contribu-
tions have been absorbed in the amplitude T . The label
“C” reminds us that only “colour-suppressed” electroweak
penguin topologies contribute to PC

ew. In (7) and (8), δT
and δCew denote CP-conserving strong phases. Explicit for-
mulae for T and PC

ew are given in [6].
The B+ → π+K0 decay amplitude entering (6) can be

expressed as follows [6]:

A(B+ → π+K0)

= λ(s)
u

[
Pu + P (u)C

ew + A
]

+λ(s)
c

[
Pc + P (c)C

ew

]
+ λ

(s)
t

[
Pt + P (t)C

ew

]
, (9)

where Pq and P
(q)C
ew denote contributions from QCD and

electroweak penguin topologies with internal q quarks (q ∈
{u, c, t}), respectively; A describes annihilation topologies,
and λ(s)

q ≡ VqsV
∗
qb are the usual CKM factors. If we make

use of the unitarity of the CKM matrix and apply the
Wolfenstein parametrization [26], generalized to include
non-leading terms in λ [27], we obtain [6]

A(B+ → π+K0)

≡ P = −
(

1 − λ2

2

)
λ2A

[
1 + ρ eiθeiγ

]Ptc , (10)

where

Ptc ≡ |Ptc| eiδtc = Pt − Pc + P (t)C
ew − P (c)C

ew (11)

and

ρ eiθ =
λ2Rb

1 − λ2/2

[
1 −

(Puc + A
Ptc

)]
. (12)

In these expressions, δtc and θ denote CP-conserving
strong phases, and Puc is defined in analogy to (11). The
quantity ρ eiθ is a measure of the strength of certain rescat-
tering effects, and the relevant CKM factors are given by
(for a recent update of Rb, see [28]):

λ ≡ |Vus| = 0.22 , A ≡ 1
λ2 |Vcb| = 0.81 ± 0.06 ,

Rb ≡ 1
λ

∣∣∣∣VubVcb

∣∣∣∣ = 0.41 ± 0.07 . (13)

In the parametrization of the B± → π±K and Bd →
π∓K± observables, it turns out to be useful to introduce
the quantities

r ≡ |T |√〈|P |2〉 , εC ≡ |PC
ew|√〈|P |2〉 , (14)

with 〈|P |2〉 ≡ 1
2

(|P |2 + |P |2) , (15)

as well as the CP-conserving strong phase differences

δ ≡ δT − δtc , ∆C ≡ δCew − δtc . (16)

The CP-conjugate amplitude P is obtained from (10) by
simply reversing the sign of the weak phase γ. A similar
comment applies also to all other CP-conjugate decay am-
plitudes appearing in this paper. In addition to the ratio
R of combined B → πK branching ratios defined by (3),
also the “pseudo-asymmetry”

A0 ≡ BR(B0
d → π−K+) − BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

= ACP(Bd → π∓K±)R (17)

plays an important role to probe the CKM angle γ. Ex-
plicit expressions for R and A0 in terms of the parameters
specified above are given in [6].

As we already noted, the electroweak penguins are
“colour-suppressed” in the case of the decays B+ → π+K0

and B0
d → π−K+. Calculations performed at the pertur-

bative quark level, where the relevant hadronic matrix el-
ements are treated within the “factorization” approach,
typically give εC = O(1%) [15]. These crude estimates
may, however, underestimate the role of these topologies
[4,16]. An improved theoretical description of the elec-
troweak penguins is possible, using the general expressions
for the corresponding four-quark operators, appropriate
Fierz transformations and the SU(2) isospin symmetry.
Following these lines [6] (see also [3,14]), we arrive at∣∣∣∣PC

ew

T

∣∣∣∣ ei(δCew−δT ) = − 3
2λ2Rb

[
C9(µ) + C10(µ)ζ(µ)
C ′

1(µ) + C ′
2(µ)ζ(µ)

]
,

(18)
with

ζ(µ) =
〈K0π+|Qu2 (µ)|B+〉 + 〈K+π−|Qu2 (µ)|B0

d〉
〈K0π+|Qu1 (µ)|B+〉 + 〈K+π−|Qu1 (µ)|B0

d〉
(19)

and

C ′
1(µ) ≡ C1(µ) +

3
2
C9(µ), C ′

2(µ) ≡ C2(µ) +
3
2
C10(µ).

(20)
Here C1,2(µ) are the Wilson coefficients of the current–
current operators

Qu1 = (ūαsβ)V−A (b̄βuα)V−A

Qu2 = (ūαsα)V−A (b̄βuβ)V−A , (21)

and the coefficients C9,10(µ) are those of the electroweak
penguin operators

Q9 =
3
2

(b̄αsα)V−A

∑
q=u,d,c,s,b

eq (q̄βqβ)V−A

Q10 =
3
2

(b̄αsβ)V−A

∑
q=u,d,c,s,b

eq (q̄βqα)V−A . (22)
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As usual, α and β are colour indices, and eq denotes the
quark charges. It should be kept in mind that two elec-
troweak penguin operators, Q7 and Q8, with tiny Wil-
son coefficients, and electroweak penguins with internal
charm- and up-quark exchanges were neglected in the
derivation of (18). In our numerical estimates given be-
low, it will suffice to use the leading-order values [29]

C1(mb) = − 0.308, C2(mb) = 1.144,
C9(mb)/α = − 1.280, C10(mb)/α = 0.328 (23)

with α = 1/129. It is possible to rewrite (18) as follows
[6]:

εC
r
ei(∆C−δ)

=
3

2λ2Rb

[
C ′

1(µ)C9(µ) − C ′
2(µ)C10(µ)

C ′2
2 (µ) − C ′2

1 (µ)

+ aC e
iωC

{
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

C ′2
2 (µ) − C ′2

1 (µ)

}]
, (24)

where we will neglect the first, strongly suppressed term

C ′
1(µ)C9(µ) − C ′

2(µ)C10(µ)
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

= O(10−2) (25)

in the following considerations:

εC
r
ei(∆C−δ)

≈ 3
2λ2Rb

[
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

C ′2
2 (µ) − C ′2

1 (µ)

]
aC e

iωC . (26)

The combination of Wilson coefficients in this expression
is essentially renormalization-scale-independent and
changes only by O(1%) when evolving from µ = MW

down to µ = mb. Employing Rb = 0.41 and the Wilson
coefficients given in (23) yields [6]

εC
r
ei(∆C−δ) ≈ 0.66 × aC e

iωC . (27)

The quantity aC e
iωC is given by

aC e
iωC ≡ aeff

2

aeff
1

=
C ′

1(µ) ζ(µ) + C ′
2(µ)

C ′
1(µ) + C ′

2(µ) ζ(µ)
, (28)

where aeff
1 and aeff

2 correspond to a generalization of the
usual phenomenological “colour” factors a1 and a2, de-
scribing the intrinsic strength of “colour-suppressed” and
“colour-allowed” decay processes, respectively [6]. Note
that the “factorization” approach gives ζ(µF) = 3, where
µF is the “factorization scale”. Comparing experimental
data on B− → D(∗)0π− and B0

d → D(∗)+π−, as well
as on B− → D(∗)0ρ− and B0

d → D(∗)+ρ− decays gives
a2/a1 = O(0.25). Here a1 and a2 are – in contrast to aeff

1
and aeff

2 – real quantities, and their relative sign is found
to be positive. Experimental studies of B → J/ψK(∗) de-
cays favour also |a2/a1| = O(0.25). If we assume that the
strength of “colour suppression” in B → πK decays is of

the same order of magnitude, i.e. aC = 0.25, we obtain
a value of εC/r that is larger by a factor of 3 than the
“factorized” result

εC
r
ei(∆C−δ)

∣∣∣
fact

= 0.06 ×
[
0.41
Rb

]
, (29)

corresponding to µ = µF and ζ(µF) = 3 in (18). However,
“colour suppression” in B → πK decays may in principle
be different from that in B → D(∗)π decays, in particular
in the presence of large rescattering effects [16]. A first step
to fix the parameter aC e

iωC experimentally is provided by
the mode B+ → π+π0 [6].

It is interesting to note that expression (26) implies a
correlation between εC and r, which is given by

εC = qC r, ∆C = δ + ωC (30)

with

qC ≈ 0.66 ×
[
0.41
Rb

]
× aC. (31)

The ratio R defined by (3) can be expressed as follows [6]:

R = 1 − 2 r
u

(h cos δ + k sin δ) + v2r2, (32)

where

h=cos γ + ρ cos θ − qC [cosωC + ρ cos(θ − ωC) cos γ](33)
k=ρ sin θ + qC [sinωC − ρ sin(θ − ωC) cos γ] (34)

and

u =
√

1 + 2 ρ cos θ cos γ + ρ2 (35)

v =
√

1 − 2 qC cosωC cos γ + q2C . (36)

The pseudo-asymmetry A0 (see (17)) takes the form

A0 = A+ + 2
r

u
[ sin δ + qC ρ sin(δ − θ + ωC) ]

× sin γ − 2 qC r2 sinωC sin γ, (37)

where

A+ ≡ BR(B+ → π+K0) − BR(B− → π−K0)
BR(B+ → π+K0) + BR(B− → π−K0)

= − 2 ρ sin θ sin γ
1 + 2 ρ cos θ cos γ + ρ2 (38)

measures direct CP violation in the decay B+ → π+K0.
Note that tiny phase-space effects have been neglected in
(32) and (37) (for a more detailed discussion, see [5]).

2.2 The decays B± → π0K± and Bd → π0K

Let us now turn to the decays B+ → π0K+, B0
d → π0K0

and their charge conjugates. The SU(2) isospin symmetry
implies the following amplitude relation [30,31]:

A(B+ → π+K0) +
√

2A(B+ → π0K+)

=
√

2A(B0
d → π0K0) + A(B0

d → π−K+)
= − [(T + C) + Pew] ≡ 3A3/2, (39)
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where Pew is due to electroweak penguins and A3/2 refers
to a πK isospin configuration with I = 3/2. Note that
there is no I = 1/2 component present in (39). Since we
have

T + C = |T + C| eiδT+C eiγ (40)

and
Pew = − |Pew|eiδew , (41)

the phase structure of the amplitude relation (39) is com-
pletely analogous to the one given in (6). We just have to
perform the replacements

T → T + C and PC
ew → Pew. (42)

The notation of T +C reminds us that this amplitude re-
ceives contributions both from “colour-allowed” and from
“colour-suppressed” b̄ → ūus̄ tree-diagram-like topolo-
gies [10]. A similar comment applies to the electroweak
penguin amplitude Pew, receiving also contributions both
from “colour-allowed” and from “colour-suppressed” elec-
troweak penguin topologies [31]. If we neglect electroweak
penguin topologies with internal charm and up quarks,
as well as the electroweak penguin operators Q7 and Q8,
which have tiny Wilson coefficients, perform appropri-
ate Fierz transformations of the remaining electroweak
penguin operators Q9 and Q10 and, moreover, apply the
SU(2) isospin symmetry, we arrive at∣∣∣∣ Pew

T + C

∣∣∣∣ ei(δew−δT+C)

= − 3
2λ2Rb

[
C9(µ) + C10(µ)ζ̃(µ)
C ′

1(µ) + C ′
2(µ)ζ̃(µ)

]
, (43)

with

ζ̃(µ) =
〈K0π+|Qu2 (µ)|B+〉 +

√
2 〈K+π0|Qu2 (µ)|B+〉

〈K0π+|Qu1 (µ)|B+〉 +
√

2 〈K+π0|Qu1 (µ)|B+〉

=
√

2 〈K0π0|Qu2 (µ)|B0
d〉 + 〈K+π−|Qu2 (µ)|B0

d〉√
2 〈K0π0|Qu1 (µ)|B0

d〉 + 〈K+π−|Qu1 (µ)|B0
d〉

≡ 〈Qu2 (µ)〉
〈Qu1 (µ)〉 , (44)

which is completely analogous to (18) and (19). Since the
SU(3) flavour symmetry of strong interactions implies

〈Qu1 (µ)〉 = 〈Qu2 (µ)〉 , (45)

it is useful to rewrite (43) as follows:∣∣∣∣ Pew

T + C

∣∣∣∣ ei(δew−δT+C) = − 3
2λ2Rb

×
[
C9(µ) + C10(µ) + {C9(µ) − C10(µ)} ζSU(3)(µ)
C ′

1(µ) + C ′
2(µ) + {C ′

1(µ) − C ′
2(µ)} ζSU(3)(µ)

]
, (46)

where (see (47) on top of the next page) describes SU(3)-
breaking corrections. In the strict SU(3) limit, we have

ζSU(3)(µ) = 0, and obtain the following “model-indepen-
dent” relation, as pointed out by Neubert and Rosner [18]:∣∣∣∣ Pew

T + C

∣∣∣∣ ei(δew−δT+C)

≡ q eiω ≈ − 3
2λ2Rb

[
C9(µ) + C10(µ)
C ′

1(µ) + C ′
2(µ)

]

≈ 3
2λ2Rb

[
C ′

1(µ)C10(µ) − C ′
2(µ)C9(µ)

C ′2
2 (µ) − C ′2

1 (µ)

]

= 0.66 ×
[
0.41
Rb

]
. (48)

The quantity q eiω is related to qC eiωC through

qC e
iωC ≈ q eiω × aC , (49)

where we have again neglected the strongly suppressed
term (25). In comparison with (26), the most important
feature of (48) is that it does not involve any hadronic
parameter. Within the “factorization” approximation, we
have very small SU(3)-breaking corrections to (48) at the
level of a few per cent [18] (see also [3]). Unfortunately,
we have no insights into non-factorizable SU(3) breaking
at present. Taking into account both the factorizable cor-
rections, which shift q from 0.66 to 0.63, and the present
experimental uncertainty of Rb (see (13)), Neubert and
Rosner give the range of q = 0.63 ± 0.15 [18].

If we compare (39) with (6), we find that the observ-
ables of the charged B-meson decays B± → π±K, π0K±
corresponding to R and A0 have to be defined as follows:

Rc ≡ 2
[
BR(B+ → π0K+) + BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]
(50)

Ac
0 ≡ 2

[
BR(B+ → π0K+) − BR(B− → π0K−)
BR(B+ → π+K0) + BR(B− → π−K0)

]

= ACP(B± → π0K±)Rc . (51)

Concerning strategies to probe the CKM angle γ, the ra-
tio Rc is more convenient in our opinion than the quantity
R∗ = 1/Rc, which was considered by Neubert and Ros-
ner in [18]. The preliminary results on the CP-averaged
branching ratios

BR(B± → π0K±) = (1.5 ± 0.4 ± 0.3) × 10−5 (52)
BR(B± → π±K) = (1.4 ± 0.5 ± 0.2) × 10−5, (53)

which were recently reported by the CLEO collaboration
[8], give

Rc = 2.1 ± 1.1 . (54)

Here we have added the errors in quadrature. This result
differs significantly from the present value of R = 1.0±0.4,
although the uncertainties are too large to say anything
definite.

In the case of the neutral modes Bd → π0K, π∓K±,
we have

Rn ≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

BR(B0
d → π0K0) + BR(B0

d → π0K0)

]
(55)
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ζSU(3)(µ) =
1 − ζ̃(µ)
1 + ζ̃(µ)

=
〈K0π+|[Qu

1 (µ) − Qu
2 (µ)]|B+〉 +

√
2 〈K+π0|[Qu

1 (µ) − Qu
2 (µ)]|B+〉

〈K0π+|[Qu
1 (µ) + Qu

2 (µ)]|B+〉 +
√

2 〈K+π0|[Qu
1 (µ) + Qu

2 (µ)]|B+〉

=
√

2 〈K0π0|[Qu
1 (µ) − Qu

2 (µ)]|B0
d〉 + 〈K+π−|[Qu

1 (µ) − Qu
2 (µ)]|B0

d〉√
2 〈K0π0|[Qu

1 (µ) + Qu
2 (µ)]|B0

d〉 + 〈K+π−|[Qu
1 (µ) + Qu

2 (µ)]|B0
d〉 (47)

An
0 ≡ 1

2

[
BR(B0

d → π−K+) − BR(B0
d → π+K−)

BR(B0
d → π0K0) + BR(B0

d → π0K0)

]

= ACP(Bd → π∓K±)Rn. (56)

While the CLEO collaboration recently reported the pre-
liminary result [8]

BR(Bd → π∓K±) = (1.4 ± 0.3 ± 0.2) × 10−5, (57)

there is at present only an upper limit available for the
decay Bd → π0K, which is given by BR(Bd → π0K) <
4.1 × 10−5 [1].

The parametrization of the observables Rc, Ac
0 and

Rn, An
0 is completely analogous to (32) and (37) and can

be obtained straightforwardly from these expressions by
performing appropriate replacements. The most obvious
one is the following:

qC e
iωC → q eiω. (58)

Moreover, we have to substitute

r → rc ≡ |T + C|√〈|P |2〉 , δ → δc ≡ δT+C − δtc (59)

in the case of the observables Rc and Ac
0. The parameter

ρ eiθ, which is defined through the B+ → π+K0 decay
amplitude, remains unchanged. This is in contrast to the
case of the neutral modes Bd → π0K, π∓K±. Here the
decay B0

d → π0K0 takes the role of the mode B+ →
π+K0. In analogy to (10), its decay amplitude can be
expressed as

√
2A(B0

d → π0K0)

≡ Pn = −
(

1 − λ2

2

)
λ2A

[
1 + ρn e

iθneiγ
]Pn

tc , (60)

where ρn e
iθn takes the form

ρn e
iθn =

λ2Rb
1 − λ2/2

[
1 −

(Pn
uc − C
Pn
tc

)]
. (61)

Here Pn
tc ≡ |Pn

tc| eiδ
n
tc and Pn

uc correspond to differences
of penguin topologies with internal top and charm and
up and charm quarks, respectively (see (11)). In contrast
to the B+ → π+K0 case, these quantities receive contri-
butions also from “colour-allowed” electroweak penguin
topologies. The amplitude C is due to insertions of the
current–current operators (21) into “colour-suppressed”
tree-diagram-like topologies. In order to parametrize the
observables Rn and An

0 with the help of (32) and (37),

we have – in addition to (58) – to perform the following
replacements:

r → rn ≡ |T + C|√〈|Pn|2〉 , δ → δn ≡ δT+C − δntc ,

ρ eiθ → ρn e
iθn . (62)

3 Probing the CKM angle γ with the decays
B± → π±K and Bd → π∓K±

Before we turn to strategies to constrain and determine
the CKM angle γ with the help of the charged decays
B± → π±K, π0K± in Sect. 4, and to a new approach deal-
ing with the neutral modes Bd → π0K, π∓K± in Sect. 5,
let us recapitulate in this section the methods using the
decays B± → π±K and Bd → π∓K±. This will allow
us, later, to better compare the virtues and weaknesses of
all three approaches. Moreover, it is useful to reanalyse
the B± → π±K and Bd → π∓K± modes in the light of
the most recent CLEO results [8], thereby pointing out
some interesting features that had not been emphasized
in previous work [2].

3.1 Strategies to constrain the CKM angle γ

Before turning to strategies to extract γ, let us first focus
on methods to constrain this angle through the ratio R of
the combined Bd → π∓K± and B± → π±K branching
ratios introduced in (3), i.e. without making use of the
expected sizeable CP asymmetry arising in Bd → π∓K±.
At present, CP-violating effects in B → πK decays have
not yet been observed, and only data for the corresponding
combined, i.e. CP-averaged, branching ratios are available.

In order to constrain the CKM angle γ with the help of
the observable R, we keep the CP-conserving strong phase
δ, which is under no theoretical control and completely
unknown at present, as a free parameter [5]. Using the
general expression (32), we find that R takes the following
extremal values:

Rmax
min |δ = 1 ± 2

r

u

√
h2 + k2 + v2r2 , (63)

which constrain γ, provided r can be determined (in [5], a
different approach was used to derive these constraints for
the special case of neglected rescattering and electroweak
penguin effects, i.e. for ρ = qC = 0). In the case of the
decays B± → π±K and Bd → π∓K±, flavour symme-
try arguments are not sufficient to fix the parameter r –
this is in contrast to the case of rc, n of the “charged” and
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“neutral” strategies discussed in the following sections –
and an additional input, for example “factorization” or
the neglect of “colour-suppressed” topologies in the decay
B+ → π+π0, have to be used to accomplish this task.
Following these lines, present data give r = 0.15 ± 0.05
[32]. Since the properly defined amplitude T , which gov-
erns the parameter r, is not just a “tree” amplitude, but
receives contributions also from certain penguin and anni-
hilation topologies [6,25], it is at present difficult to esti-
mate the theoretical uncertainty of r in a realistic way.
Optimistic analyses come to the conclusion that a fu-
ture theoretical uncertainty of ∆r = O(10%) may be
achievable [4,33]. However, if rescattering processes of the
kind B+ → {π0K+} → π+K0 should play an important
role, the uncertainties may be significantly larger. Conse-
quently, it would be favourable to have constraints on γ
that do not depend on r.

It was pointed out in [5] that such bounds can be ob-
tained, provided R is found to be smaller than 1. Within
our formalism, they can be derived by keeping both δ and
r as free parameters in the general expression (32) for R.
Following these lines, we find that R takes the minimal
value [6]

Rmin|r, δ
=

[
1 + 2 qC ρ cos(θ + ωC) + q2C ρ

2

(1 − 2 qC cosωC cos γ + q2C) (1 + 2 ρ cos θ cos γ + ρ2)

]
× sin2 γ , (64)

which corresponds to a generalization of the result de-
rived in [5] (see (4) and (5)), and would exclude a certain
range of γ around 90◦, if R is found to be smaller than
1. This feature led to great excitement in the B-physics
community, since the first results reported by the CLEO
collaboration gave R = 0.65 ± 0.40 [1]. Unfortunately, a
recent, preliminary update yields R = 1.0 ± 0.4 and is
therefore not as promising [8], although it is too early to
draw definite conclusions.

In Fig. 1, we have chosen qC e
iωC = 0.66 × 0.25 and

ρ = 0 in order to illustrate the dependence of (63) and (64)
on the CKM angle γ. For R = 0.85, the latter expression
would exclude the range of 58◦ ≤ γ ≤ 104◦. The values of r
used to evaluate (63) correspond to the presently allowed
range given by Gronau and Rosner [32]. In the future,
the corresponding uncertainty of 33% may be reduced by
a factor of O(3), provided rescattering processes play a
negligible role. On the other hand, r may in principle be
shifted significantly, if rescattering effects should turn out
to be large. Important indicators for this unfortunate case
would be large direct CP violation in B± → π±K modes,
and the size of the branching ratios of the decays B± →
K±K and Bd → K+K− [6,7,24]. In order to illustrate
the constraints on γ in more detail, let us assume that
B± → K±K and Bd → K+K− indicate that rescattering
effects play a very minor role and that the strategies to
fix r (see, for example, [4,32,33]) yield r = 0.15. As can
be read off from Fig. 1, the minimal value of R given in
(63) would exclude the range of 44◦ ≤ γ ≤ 115◦ in the
case of R = 0.85. If we assume that R is found to be

0 15 30 45 60 75 90 105 120 135 150 165 180
γ [deg]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

R

r=0.20
r=0.15
r=0.10
Rmin|r,δ

Fig. 1. The dependence of the extremal values of R given in
(63) and (64) on the CKM angle γ for qC eiωC = 0.66× 0.25 in
the case of negligible rescattering effects, i.e. ρ = 0

equal to 1.15, (64) would not be effective. However, the
maximal value of R given in (63) would exclude the range
of 53◦ ≤ γ ≤ 105◦.

3.2 Strategies to determine the CKM angle γ

As soon as CP violation in Bd → π∓K± decays is ob-
served, it is possible to go beyond the bounds on γ dis-
cussed in the previous subsection. Then we are in a posi-
tion to eliminate the strong phase δ in R with the help of
the pseudo-asymmetry A0, thereby fixing contours in the
γ–r plane, which are a mathematical implementation of
the simple triangle construction proposed in [3]. The cor-
responding formulae are quite complicated and are given
in [6]. In order to illustrate these contours in a quantitative
way, let us assume – in analogy to an example discussed
by Neubert and Rosner in [19] – that γ = 76◦, r = 0.15
and δ = 20◦. If we use, moreover, qC eiωC = 0.66 × 0.25
and ρ = 0, we obtain R = 1.00 and A0 = 9.96%. The con-
tours in the γ–r plane corresponding to these “measured”
observables are shown in Fig. 2. For r = 0.15, which is rep-
resented in this figure by the dotted line, we have four so-
lutions for γ: 19◦, 76◦, which is the “true” value in our ex-
ample, 85◦ and 161◦. Moreover, a range of 78◦ ≤ γ ≤ 84◦
is excluded. Since the values of 19◦ and 161◦ are outside
the presently allowed range of 41◦ ∼< γ ∼< 97◦ [34], which
is implied by the usual fits of the unitarity triangle, we
are left with the two “physical” solutions of 76◦ and 85◦.
In this example, the contours in the γ–r plane have the
very interesting feature that these solutions are almost in-
dependent of the value of r (see also [6]). Consequently,
they are only affected to a small extent by the uncertainty
of r. As we have already noted, if rescattering processes
should play an important role, it may be difficult to fix this
parameter in a reliable way. While it is possible to take
into account the shift of the contours in the γ–r plane due
to large rescattering effects, with the help of the decays
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Fig. 2. The contours in the γ–r plane corresponding to R =
1.00, A0 = 9.96% and qC eiωC = 0.66 × 0.25 in the case of
negligible rescattering effects, i.e. ρ = 0

B± → K±K and the SU(3) flavour symmetry [6,7], there
is unfortunately no straightforward approach to accom-
plish this task also in the determination of r. In [6], also
the uncertainties related to the “colour-suppressed” elec-
troweak penguins were analysed. If we used, for example,
the strongly suppressed “factorized” result (29) to deal
with these topologies in the contours in the γ–r plane,
we would obtain the solutions γ = 19◦, 82◦, 91◦, 161◦ for
r = 0.15, i.e. our “physical” solutions from above would
be shifted by 6◦ towards larger values of γ.

This example shows that the new central value of R =
1 reported recently by the CLEO collaboration [8] does
not imply – even if confirmed by future data – that the
modes B± → π±K and Bd → π∓K± are “useless” to
probe the CKM angle γ. Although the constraints on this
angle that are implied by the combined branching ratios of
these modes would not be effective in this case (see Fig. 1),
the prospects to determine γ as soon as CP violation in
Bd → π∓K± is measured appear to be promising in our
opinion.

4 Probing the CKM angle γ with the charged
decays B± → π±K and B± → π0K±

The subjects of this section are strategies to probe the
CKM angle γ with the help of the observables Rc and
Ac

0 defined in (50) and (51). In this context, an impor-
tant additional ingredient is provided by the fact that the
amplitude T + C can be determined with the help of the
decay B+ → π+π0 by using the SU(3) flavour symmetry
of strong interactions [10]:

T + C ≈ −
√

2
Vus
Vud

fK
fπ

A(B+ → π+π0). (65)

Here the ratio fK/fπ = 1.2 of the kaon and pion decay
constants takes into account factorizable SU(3)-breaking

corrections. At present, the non-factorizable corrections
to (65) cannot be treated in a quantitative way. It should
be noted that electroweak penguin contributions are also
not included in this expression. However, the formalism
discussed in Sect. 2.2 applies also to the B → ππ case,
where the SU(2) isospin symmetry suffices to derive the
following expression:[∣∣∣∣ Pew

T + C

∣∣∣∣ ei(δew−δT+C)
]
b̄→d̄

=
3

2Rb

[
C9(µ) + C10(µ)
C ′

1(µ) + C ′
2(µ)

]
= − 3.3 ×

[
0.41
Rb

]
× 10−2. (66)

As in the b̄ → s̄ case, the amplitues (T + C)b̄→d̄ and
(Pew)b̄→d̄ are proportional to the CKM factors λ(d)

u and
λ

(d)
c , respectively. Using (66), we find the corrected ex-

pression

T + C ≈ −
√

2
Vus
Vud

fK
fπ

[
A(B+ → π+π0)
1 + 0.033 × e−iγ

]
. (67)

Consequently, the electroweak penguins lead to a correc-
tion to (65) that is at most a few per cent. It is interesting
to note that a theoretical input similar to (66) allows us to
include electroweak penguin topologies in the well-known
Gronau–London method [35] to determine the angle α of
the unitarity triangle with the help of B → ππ isospin re-
lations. This by-product of our considerations is discussed
in more detail in the appendix.

4.1 Strategies to constrain the CKM angle γ

The constraints on γ implied by (63) and (64) apply also
to the B± → π±K, π0K± case, if straightforward replace-
ments are performed. We just have to substitute

R → Rc , r → rc , qC e
iωC → q eiω (68)

in these expressions, leading to the extremal values

Rext
c

∣∣
δc

= 1 ± 2
rc
u

√
h2 + k2 + v2r2c (69)

and

Rmin
c

∣∣
rc,δc

=
[

1 + 2 q ρ cos(θ + ω) + q2ρ2

(1 − 2 q cosω cos γ + q2) (1 + 2 ρ cos θ cos γ + ρ2)

]
× sin2 γ . (70)

Note that also qC eiωC has to be replaced by q eiω in the
quantities h, k and v specified in (33)–(36). In compar-
ison with B± → π±K and Bd → π∓K±, the decays
B± → π±K, π0K± have the advantage that the parame-
ters q eiω and rc can be fixed with the help of (48) and (65),
respectively, i.e. by using only the SU(3) flavour symmetry
[18,19]. In particular, these parameters are not affected by
rescattering effects, and the theoretical accuracy of their
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extracted values is only limited by non-factorizable SU(3)-
breaking effects. The present data give q eiω = 0.63± 0.15
and rc = 0.24 ± 0.06.

Because of the present experimental range of Rexp
c =

2.1 ± 1.1, the bounds on γ associated with (70) are not
effective at the moment and the major role to constrain
this angle is played by the maximal value of Rc, which
corresponds to “+” in (69). The values of γ implying
Rexp

c > Rmax
c are excluded. These constraints correspond

to the bound pointed out by Neubert and Rosner in [18],
who considered the observable R∗ = 1/Rc and performed
an expansion in the parameter rc in order to derive their
bound. Moreover, ω = 0◦, corresponding to the strict
SU(3) limit (48), was assumed. The expansion in rc has
the interesting feature that there are no terms of O(ρ)
present at leading order, i.e. rescattering effects do not
enter at this level:

Rext
c

∣∣L.O.
δc

= 1 ± 2 rc
√

(cos γ − q cosω)2 + (q sinω)2

ω=0◦
−→ 1 ± 2 rc | cos γ − q| (71)

However, as we will see below, rescattering effects may still
have a sizeable impact on the bounds on γ. Let us empha-
size that our result (69) is valid exactly and provides a
simple interpretation of the constraints on γ pointed out
by Neubert and Rosner. Furthermore, it allows us to inves-
tigate the sensitivity both on rescattering and on possible
SU(3)-breaking effects (see (46)–(48)). The latter may,
among other things, lead to ω 6= 0◦.

In Fig. 3, we have chosen q eiω = 0.63 to illustrate the
constraints on the CKM angle γ that are implied by (69)
and (70) for values of rc lying within the presently allowed
range given in [18]. The thick dot-dashed line corresponds
to the leading-order term of the expansion in rc given in
(71). In the case of rc = 0.24 and Rc = 1.4, values of
γ < 92◦ would be excluded, as can be read off easily from
this figure. We observe that the lower bound on γ following
from the leading-order result receives a sizeable correction
of − 10◦ in this example.

The extraction of the parameter rc is – in contrast to
the determination of r in the B± → π±K, Bd → π∓K±
case – not affected by rescattering processes and can be
accomplished by using only SU(3) flavour symmetry ar-
guments. However, this feature does not imply that the
constraints on γ are also not affected by rescattering pro-
cesses, which may lead to sizeable values of ρ. We have
illustrated these effects in Fig. 4, where we have chosen
q eiω = 0.63, rc = 0.24, ρ = 0.15 and θ ∈ {0◦, 180◦}. For
these strong phases, the rescattering effects are maximal.
In the case of Rc = 1.4, they lead to an uncertainty of
∆γ = ± 7◦. If we compare these effects with the analysis
performed in [6], we observe that the constraints on γ are
affected, to a similar extent, by rescattering processes, as
are those implied by the B± → π±K and Bd → π∓K± ob-
servables [5]. In our formalism, these effects can be taken
into account with the help of the strategies proposed in [6,
7] (for alternative methods, see [22,25]). To this end, addi-
tional experimental data provided by B± → K±K decays
are needed. Since this issue was discussed extensively in
[6,7], we will not work it out in more detail here.
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Fig. 3. The dependence of the extremal values of Rc described
by (69) and (70) on the CKM angle γ for q eiω = 0.63 in the
case of negligible rescattering effects, i.e. ρ = 0

0 15 30 45 60 75 90 105 120 135 150 165 180
γ [deg]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
c

ρ=0
ρ=0.15

Fig. 4. The impact of rescattering effects on the extremal
values of Rc described by (69) and (70) for q eiω = 0.63 and
rc = 0.24 (θ ∈ {0◦, 180◦})

Let us now investigate the uncertainties associated with
the electroweak penguin parameter q eiω. In Fig. 5, we
show the dependence of (69) on the CKM angle γ for
rc = 0.24, ω = 0◦ and for various values of q. The strong
phase ω is varied in Fig. 6 by keeping rc = 0.24 and
q = 0.63 fixed. If we look at these figures, we observe
that in particular non-vanishing values of ω, which may be
induced by non-factorizable SU(3)-breaking effects, may
weaken the bounds on γ implied by (69) significantly for
1.2 ∼< Rc ∼< 1.4. As we will see in the next subsection,
a similar comment applies to the strategies to determine
the CKM angle γ with the help of the decays B± → π±K,
π0K±.
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Fig. 5. The dependence of the extremal values of Rc described
by (69) on the CKM angle γ for rc = 0.24, ω = 0◦ and for
various values of q (ρ = 0)
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Fig. 6. The dependence of the extremal values of Rc described
by (69) on the CKM angle γ for rc = 0.24, q = 0.63 and for
various values of ω (ρ = 0)

4.2 Strategies to determine the CKM angle γ

In analogy to the B± → π±K, Bd → π∓K± strategy, it is
possible to go beyond the bounds on γ discussed in the pre-
vious subsection as soon as CP violation in B± → π0K±
decays is observed. We then are in a position to determine
contours in the γ–rc plane with the help of the general for-
mulae given in [6]. Since rc can be fixed through (65), γ
can be determined from these contours, which correspond
to a mathematical implementation of the simple triangle
construction proposed in [10]. However, in contrast to this
construction, these contours take into account electroweak
penguins through (48).

Let us consider again a specific example in order to
illustrate this strategy in more detail. To this end, we fol-
low Neubert and Rosner [19] and assume that γ = 76◦,
ρ = 0, rc = 0.24, δc = 20◦ and q eiω = 0.63 to calcu-
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Fig. 7. The contours in the γ–rc plane corresponding to Rc =
1.24, Ac

0 = 15.9% and q eiω = 0.63. The thin lines illustrate
rescattering effects (ρ = 0.15, θ ∈ {0◦, 180◦})

late the observables Rc and Ac
0. These parameters give

Rc = 1.24 and Ac
0 = 15.9%. In Fig. 7, we show the corre-

sponding contours in the γ–rc plane. The thick lines de-
scribe the contours arising for ρ = 0, and the dotted line
represents the “measured” value of rc. Their intersection
gives a two-fold solution for γ, including the “true” value
of 76◦ and a second solution of 160◦. The thin lines illus-
trate the impact of possible rescattering processes and are
obtained for ρ = 0.15 and θ ∈ {0◦, 180◦}. For these strong
phases, the rescattering effects are maximal. Applying the
strategies proposed in [6,7], the rescattering effects can
be taken into account in these contours. To this end, ad-
ditional experimental data on B± → K±K decays are
required. Unfortunately, non-factorizable SU(3)-breaking
effects cannot be included in a similar manner. Such cor-
rections may affect both the determination of |T +C|, i.e.
of rc, and the calculation of the electroweak penguin pa-
rameter q eiω, which may be shifted from (48). In Fig. 8,
we show the dependence of the contours in the γ–rc plane
arising in our specific example on the parameter q, while
we illustrate the impact of non-vanishing values of the
strong phase ω in Fig. 9. In these two figures, we have
neglected rescattering effects, i.e. we have chosen ρ = 0.
We observe that the contours are rather sensitive to the
phase ω. For values of ω = − 30◦, we even get additional
solutions for γ. We are optimistic that future experimen-
tal data from B-decay experiments will shed light on the
issue of non-factorizable SU(3)-breaking effects.

Before we present a new strategy to probe the CKM
angle γ with the help of the neutral decays Bd → π0K,
π∓K±, let us briefly go back to the B± → π±K, Bd →
π∓K± approach discussed in Sect. 3. If we compare the
contours in the γ–r plane shown in Fig. 2 with those in the
γ–rc plane shown in Fig. 7, we observe that they are very
different from each other. In particular, the B± → π±K,
Bd → π∓K± case appears to be more promising for this
specific example. Time will tell which one of these two
strategies is really more powerful in practice.
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5 Probing the CKM angle γ with the neutral
decays Bd → π0K and Bd → π∓K±

The observables Rn and An
0 of the neutral B decays Bd →

π0K, π∓K± allow strategies to probe the CKM angle γ
that are completely analogous to those discussed in the
previous section. However, in the case of these modes,
we have an additional CP-violating observable at our dis-
posal, which allows us to take into account rescattering
effects in a theoretically clean way. The point is as fol-
lows: since Bd → π∓K± is a self-tagging neutral B decay,
it exhibits only direct CP violation due to the interfer-
ence between the “tree” and “penguin” amplitudes, but
no mixing-induced CP violation, arising from interference
effects between B0

d–B
0
d mixing and decay processes. On

the other hand, if we consider Bd → π0K modes and re-

quire that the kaon be observed as aKS, the resulting final
state f is an eigenstate of the CP operator with eigenvalue
−1. In this case, we have to deal with mixing-induced
CP violation and obtain the following time-dependent CP
asymmetry [36]:

ACP(Bd(t) → f) ≡ Γ (B0
d(t) → f) − Γ (B0

d(t) → f)

Γ (B0
d(t) → f) + Γ (B0

d(t) → f)

= Adir
CP(Bd → f) cos(∆Md t)

+Amix−ind
CP (Bd → f) sin(∆Md t) . (72)

Here Γ (B0
d(t) → f) and Γ (B0

d(t) → f) denote the decay
rates of initially, i.e. at time t = 0, present B0

d and B0
d

mesons, respectively; ∆Md is the mass difference of the
Bd mass eigenstates, and

Adir
CP(Bd → f) =

1 −
∣∣∣ξ(d)f

∣∣∣2
1 +

∣∣∣ξ(d)f

∣∣∣2 (73)

Amix−ind
CP (Bd → f) =

2 Im ξ
(d)
f

1 +
∣∣∣ξ(d)f

∣∣∣2 (74)

describe direct and mixing-induced CP violation. The ob-
servable ξ

(d)
f containing essentially all the information

needed to evaluate these CP-violating asymmetries is given
as follows:

ξ
(d)
f = ∓ e−iφ(d)

M
A(B0

d → f)
A(B0

d → f)
, (75)

where A(B0
d → f) and A(B0

d → f) are “unmixed” decay
amplitudes, φ(d)

M = 2 arg(V ∗
tdVtb) denotes the weak B0

d–B
0
d

mixing phase, and (CP)|f〉 = ±|f〉.
If the final state f contains a neutral kaon, as in the

case of Bd → π0KS, we have in addition to take into ac-
count a phase φK , which is related to K0–K0 mixing and
is negligibly small in the Standard Model. The combina-
tion φ

(d)
M + φK , which is relevant for Bd → π0KS, can be

determined in a theoretically clean way with the help of
the “gold-plated” mode Bd → J/ψKS [37]:

ACP(Bd(t) → J/ψKS) = − sin
(
φ

(d)
M + φK

)
sin(∆Md t) .

(76)
Within the Standard Model, we have φ(d)

M = 2β, where β
is another angle of the unitarity triangle, and φK = 0 to a
very good approximation. In the case of the decay Bd →
π0KS, the observables (73) and (74) can be expressed as
follows [38,39]:

Adir
CP(Bd → π0KS) =

|Pn|2 − |Pn|2
|Pn|2 + |Pn|2 (77)

Amix−ind
CP (Bd → π0KS) = − 2 |Pn||Pn|

|Pn|2 + |Pn|2
sin

[(
φ

(d)
M + φK

)
+ ψ

]
, (78)
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where Pn ≡ √
2A(B0

d → π0K0) (see (60)), Pn ≡ √
2A(B0

d

→ π0K0), and ψ denotes the angle between these ampli-
tudes, i.e. Pn/Pn ≡ e−iψ |Pn|/|Pn|.

The determination of γ by means of Bd → π0K,
π∓K±, which we would like to propose here, uses (39),
(48), (65), (72) and (76)–(78). The geometrical version of
this determination, which is illustrated in Fig. 10, proceeds
in the following steps:

1. From time-dependent studies of the Bd → π0KS and
Bd → J/ψKS decay rates and the associated CP-
violating asymmetries, which are represented by (72)
and (76)–(78), we determine the absolute values of the
amplitudes Pn and Pn, as well as their relative orien-
tation in the complex plane, i.e. the angle ψ.

2. Using (48) and (65), we determine |Pew| and |T +C| =
|T + C|, respectively.

3. Using BR(B0
d → π−K+) and BR(B0

d → π+K−), we
determine the magnitudes of the amplitudesA ≡ A(B0

d

→ π−K+) and A ≡ A(B0
d → π+K−), respectively.

4. The information collected in steps 1–3 allows us to con-
struct two quadrangles in the complex plane, as shown
in Fig. 10. They are a geometrical representation of the
amplitude relation (39) and its CP conjugate, which –
in terms of the notation used in this figure – take the
form

Pn + (T + C) +A+ Pew = 0 (79)

Pn + (T + C) +A+ Pew = 0 . (80)

Since only information on |Pew| has been used so far,
the precise shapes of these two quadrangles are not yet
fixed.

5. Finally, we make again use of (48) to determine the
phase ω = δew − δT+C . This gives us the orientation of
the electroweak penguin amplitude Pew with respect to
the line that bisects the angle between T+C and T+C.
This final information, together with the construction
of step 4, determines the shapes of the two quadrangles
in question, and consequently also the CKM angle γ,
as shown in Fig. 10.

In this construction, there are no uncertainties due to
rescattering effects, and the theoretical accuracy is lim-
ited only by non-factorizable SU(3)-breaking corrections,
which may affect (48) and (65).

In order to have the tools available to implement this
geometrical construction in a mathematical way, we give
the explicit expression for Amix−ind

CP (Bd → π0KS) in terms
of the parameters ρn and θn defined in (60): (see (81) on
top of the next page), which reduces to

Amix−ind
CP (Bd → π0KS)

= − sin
(
φ

(d)
M + φK

)
= Amix−ind

CP (Bd → J/ψKS) (82)

in the case of ρn = 0 [3]. The direct CP asymmetry
Adir

CP(Bd → π0KS) takes the same form as the direct CP
asymmetry A+ arising in the decay B+ → π+K0 (see

P T + C

Pew

n

T + C

A

A

2γ
ψ

ϕ

Pn

Fig. 10. Illustration of a strategy to determine the CKM angle
γ by means of the neutral decays B0

d → π0K0, B0
d → π−K+

and their charge conjugates

(38)). Consequently, measuring Adir
CP(Bd → π0KS),

Amix−ind
CP (Bd → π0KS), Rn and An

0 (see (55) and (56)),
we can determine the four “unknowns” ρn, θn, δn and the
CKM angle γ (rn and φ(d)

M +φK are fixed through (65) and
(76), respectively) as functions of the electroweak penguin
parameter q eiω. The latter can be determined by using
(48).

The utility of time-dependent measurements of the de-
cay Bd → π0KS to probe angles of the unitarity trian-
gle was already pointed out several years ago by Nir and
Quinn [30], who proposed a strategy to determine the an-
gle α with the help of the amplitude relation (39). At that
time, it was believed that electroweak penguins play only
a very minor role in B decays, which is actually not the
case because of the large top-quark mass [13,14]. A con-
struction similar to the one shown in Fig. 10 would in fact
allow the extraction of the CKM angle α, if electroweak
penguins played a negligible role, i.e. if Pew = 0. In order
to see how this strategy works, we have to rotate the CP-
conjugate amplitudes Pn, T+C and A by the phase factor
e−i(φ(d)

M +φK) = e−i2β , so that the angle between T+C and
the rotated T +C amplitude is a measure of 2α (note that
β + γ = 180◦ − α). A similar “trick” was also used in our
discussion of the B → ππ approach given in the appendix.
Since the angle ψ̃ ≡ (φ(d)

M + φK) + ψ between Pn and the
rotated amplitude Pn can be determined directly by using
the mixing-induced CP asymmetry (78), the CKM angle α
can be determined. Unfortunately, this construction does
not work in the presence of electroweak penguins. In or-
der to take them into account with the help of (48), the
phase φ(d)

M +φK of the rotated electroweak penguin ampli-
tude Pew(= Pew) has to be determined by making use of
(76), and we arrive at a construction, which is equivalent
to the one discussed above. Interestingly, the situation in
this respect is very different in the α determination from
B → ππ isospin triangle relations, as we show in the ap-
pendix.

Let us now come back to the decay Bd → π0K. Con-
cerning the parameter ρn defined in (61), the usual näıve
expectation based on “colour suppression” and “short-
distance” arguments is a value at the level of a few per
cent, implying small direct CP violation in Bd → π0K
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Amix−ind
CP (Bd → π0KS) = −


 sin

(
φ

(d)
M + φK

)
+ 2 ρn cos θn sin

(
φ

(d)
M + φK + γ

)
+ ρ2

n sin
(
φ

(d)
M + φK + 2 γ

)

1 + 2 ρn cos θn cos γ + ρ2
n


 (81)

and small corrections to (82). Moreover, we would expect a
tiny angle ψ between the amplitudes Pn and Pn in Fig. 10.
However, rescattering effects of the kind discussed in [16],
[20]–[24] may in principle also lead to an enhancement of
ρn, thereby affecting (82) and leading to sizeable direct
CP violation in Bd → π0K, as well as to a sizeable value
of the angle ψ. On the other hand, if (77) and (78) should
in fact imply a tiny value of ψ, i.e. that Pn ≈ Pn, there
would be a simple strategy to extract γ by using in addi-
tion the observables provided by an analysis of the decay
Bs → K+K−. For sizeable values of ψ, this mode would
also be very useful, allowing us to reduce the theoretical
input concerning the electroweak penguins considerably.
Let us turn to this decay in the following section.

6 Strategies to combine Bs → K+K−

modes with Bu,d → πK decays

6.1 Preliminaries

The decay Bs → K+K−, which is the Bs counterpart
of the mode Bd → π∓K±, plays an important role to
probe the CKM angle γ and to obtain experimental in-
sights into electroweak penguins [3, 17, 39–41]. In con-
trast to the Bd case, there may be a sizeable width differ-
ence ∆Γs ≡ Γ

(s)
H − Γ

(s)
L between the mass eigenstates BH

s

(“heavy”) and BL
s (“light”) of the Bs system [42], which

may allow studies of CP violation with untagged Bs data
samples, where one does not distinguish between initially,
i.e. at time t = 0, present B0

s or B0
s mesons [43]. The

corresponding untagged Bs decay rates are defined by

Γ [f(t)] ≡ Γ (B0
s (t) → f) + Γ (B0

s (t) → f), (83)

and can be expressed as (see, for instance, [36])

Γ [f(t)] ∝
[
1 + A∆Γ (Bs → f)

]
e−Γ (s)

H t

+
[
1 − A∆Γ (Bs → f)

]
e−Γ (s)

L t (84)

with

A∆Γ (Bs → f) =
2 Re ξ(s)f

1 +
∣∣∣ξ(s)f

∣∣∣2 . (85)

Note that there are no rapid oscillatory ∆Ms t terms
present in (84). The observable ξ

(s)
f is defined in anal-

ogy to (75); we have just to replace the B0
d–B

0
d mixing

phase φ(d)
M in that expression by its Bs counterpart φ(s)

M =
2 arg(V ∗

tsVtb), which is negligibly small in the Standard

Model. The width difference ∆Γs modifies also the expres-
sion for the time-dependent CP asymmetry (72). In the
Bs case, it takes the following form: (see (86) on top of
the next page), where Adir

CP(Bs → f) and Amix−ind
CP (Bs →

f) correspond to (73) and (74), respectively, and Γs ≡(
Γ

(s)
H + Γ

(s)
L

)
/2.

If we introduce the notation As ≡ A(B0
s → K+K−),

As ≡ A(B0
s → K+K−) and denote the angle between

these amplitudes by ϕs, we obtain the following expres-
sions for the Bs → K+K− observables [39]:

Adir
CP(Bs → K+K−) =

|As|2 − |As|2
|As|2 + |As|2

(87)

Amix−ind
CP (Bs → K+K−)

=
2 |As||As|

|As|2 + |As|2
sin

(
φ

(s)
M + ϕs

)
(88)

A∆Γ (Bs → K+K−)

= − 2 |As||As|
|As|2 + |As|2

cos
(
φ

(s)
M + ϕs

)
. (89)

The measurement of these quantities allows us to con-
struct the amplitudes As and As in the complex plane,
i.e. to determine both their magnitudes and their rela-
tive orientation, provided the B0

s–B0
s mixing phase φ(s)

M is
known. As we already noted, this phase is tiny in the Stan-
dard Model. It can in principle be determined with the
help of the decay Bs → J/ψ φ (see, for example, [40,44]),
which is the Bs counterpart of the “gold-plated” mode
Bd → J/ψKS and is very accessible at future hadron ma-
chines, for example at the LHC. Large CP violation in
Bs → J/ψ φ would indicate new-physics contributions to
B0
s–B0

s mixing. Even in such a scenario of new physics, it
would be possible to fix the amplitudes As and As in the
complex plane by measuring in addition to (87)–(89) the
observables of the decay Bs → J/ψ φ.

The decays Bs → K+K− and Bd → π∓K± differ only
in their “spectator” quarks and can be related to each
other through SU(3) flavour symmetry arguments. Poten-
tial SU(3)-breaking effects are also due to “penguin anni-
hilation” processes, which contribute to Bs → K+K− (for
an explicit expression of the decay amplitude, see [39]),
and are absent in Bd → π∓K±. The importance of these
topologies, which are expected to play a minor role [31,
45], can be investigated with the help of the decay Bs →
π+π−; other interesting probes for SU(3)-breaking effects
can be obtained by comparing the observables of the un-
taggedBs → K+K− rate with the combinedBd → π∓K±
branching ratio, or their direct CP asymmetries [39]. Let
us assume in the following that explorations of this kind
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ACP(Bs(t) → f) ≡ Γ (B0
s (t) → f) − Γ (B0

s (t) → f)
Γ (B0

s (t) → f) + Γ (B0
s (t) → f)

= 2 e−Γst


Adir

CP(Bs → f) cos(∆Ms t) + Amix−ind
CP (Bs → f) sin(∆Ms t)

e−Γ
(s)
H t + e−Γ

(s)
L t + A∆Γ (Bs → f)

(
e−Γ

(s)
H t − e−Γ

(s)
L t

)

 (86)

indicate small SU(3)-breaking effects. Then we may iden-
tify the angle ϕs between the Bs → K+K− amplitudes
As and As with the angle ϕ between the Bd → π∓K±
amplitudes A and A (see Fig. 10). The knowledge of this
angle would be very useful, since it allows us to fix the
relative orientation of A and A.

Let us note that a time-dependent, tagged Bs →
K+K− analysis has to be performed in order to deter-
mine ϕs. However, if we use the direct CP asymmetry
ACP(Bd → π∓K±), the ratio |As|/|As| can be fixed with
the help of the SU(3) flavour symmetry, allowing the de-
termination of ϕs up to a two-fold ambiguity from the
untagged observable (89). Although future B-physics ex-
periments performed at hadron machines should be in a
position to resolve the rapid oscillatory ∆Ms t terms aris-
ing in tagged Bs data samples, untagged studies are more
promising in terms of efficiency, acceptance and purity
[43].

6.2 Strategy A

If the angle ϕ in Fig. 10 is known, the theoretical input
concerning the electroweak penguin amplitude Pew can
be reduced considerably. In particular, step 5 of the proce-
dure given in the previous section could be avoided, since
the first four steps, together with the knowledge of the an-
gle ϕ, would determine the shapes of the two quadrangles
in Fig. 10. This would not only allow us to determine the
CKM angle γ, but also the strong phase ω in (48). Con-
versely, we could use ω as our theoretical input to deal
with the electroweak penguins, and could then determine
both the electroweak penguin parameter q and the CKM
angle γ. Both approaches would offer some consistency
checks for (48).

Should it become possible to determine the CKM angle
γ with the help of other strategies, using for example the
theoretically clean approach provided by the “tree” decays
Bs → D±

s K
∓ [46], the geometrical construction shown in

Fig. 10 would allow us to determine the electroweak pen-
guin amplitude Pew completely, i.e. both q and ω (see also
[17]). To accomplish this task, a sizeable angle ψ between
the amplitudes Pn and Pn is required. Consequently, this
strategy to determine the electroweak penguin amplitude
does not work in the case of small rescattering effects and
significant “colour suppression” in Bd → π0K, leading to
Pn ≈ Pn. As we will see in the next subsection, there is,
however, another, simpler strategy to obtain insights into
electroweak penguins in this case.

2γ
ϕ

A

A

T + CT + C

P

P = Pn n

ew

Fig. 11. Simple strategy to determine γ with the help of the
decays B± → π±π0, Bd → π∓K± and Bs → K+K− in the
case of Pn = Pn (thick solid lines), and to obtain insights into
electroweak penguins by using in addition Bd → π0K (thin
dotted lines)

6.3 Strategy B

The case Pn ≈ Pn would be very favourable for the extrac-
tion of γ, thereby offering a new way to determine this an-
gle that is only affected to a small extent by electroweak
penguins. For Pn = Pn, there would be no electroweak
penguin uncertainties at all. This strategy requires only
the measurement of B+ → π+π0 to fix |T + C| with the
help of (65), and analyses of the decays Bd → π∓K± and
Bs → K+K− to determine the amplitudes A and A in
the complex plane. Although it is possible to see already
in Fig. 10 how this SU(3) strategy works, we think it use-
ful to redraw it for the special case of Pn = Pn in Fig. 11.
Here the CKM angle γ can be determined with the help
of the simple geometrical construction involving only the
thick solid lines. The Bd → π0K amplitude allows us, fur-
thermore, to fix the electroweak penguin parameter q, if
ω is used as an input, or the strong phase ω, if we use q as
an input, thereby providing consistency checks for (48).

6.4 Strategy C

The Bd → π∓K± amplitudes A and A can also be com-
bined with those of the charged B-meson decays B± →
π±K, π0K±. Neglecting PC

ew in the amplitude relation (6),
we obtain the triangle relations

P + T +A = 0 (90)

P + T +A = 0 . (91)

If, moreover, we neglect rescattering effects, we have P =
P , and consequently arrive at the two triangles repre-
sented by the thick solid lines in Fig. 12. If the angle ϕ
is known from the Bs → K+K− analysis, both γ and
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A
P

TT

A

B B

2γϕ
ew

P = P

Fig. 12. Simple strategy to determine γ with the help of the
decays Bd → π∓K± and B± → π±K (thick solid lines), and to
obtain insights into electroweak penguins by using in addition
B± → π0K± (thin dotted lines). Here rescattering effects have
been neglected and it has been assumed that “colour suppres-
sion” is effective

|T | can be simultaneously determined by requiring |T | =
|T |. Using the strategies proposed in [6,7], which make
use of B± → K±K decays, rescattering processes can
be taken into account in this approach to determine γ.
Its theoretical accuracy is limited by SU(3)-breaking ef-
fects and “colour-suppressed” electroweak penguins. Let
us note that if ϕ is unknown, |T | has to be fixed in order
to extract γ. This construction then corresponds to the
one proposed in [3]. If rescattering processes play a mi-
nor role and the hypothesis of “colour suppression” works
in B → πK decays, we have T + C ≈ T , and can de-
termine |T | with the help of (65). Moreover, if we use in
addition the amplitudes B ≡ √

2A(B+ → π0K+) and
B ≡ √

2A(B− → π0K−), the electroweak penguin am-
plitude Pew can be determined [3,36]. To this end, the
relation (39) with C = 0 is used:

P + T +B + Pew = 0 , (92)

as well as its CP conjugate with P = P , which holds for
small rescattering effects:

P + T +B + Pew = 0 . (93)

This strategy is also illustrated in Fig. 12, where the am-
plitudes B, B and Pew are represented by the thin dotted
lines.

7 Conclusions

In summary, we have performed an analysis of the com-
binations B± → π±K, π0K± and Bd → π0K, π∓K± of
charged and neutral B decays within a completely general
formalism, taking into account both electroweak penguin
and rescattering effects. Originally, this formalism was de-
veloped in [6] to probe the CKM angle γ with the help of
the decays B± → π±K and Bd → π∓K±, but it can also
be applied to these combinations of charged and neutral
B decays, if straightforward replacements of variables are
performed. In this manner, we could obtain a unified pic-
ture of B → πK decays, which is useful for the comparison
of the various approaches using these modes to probe the
CKM angle γ.

Following these lines, we were in a position to gen-
eralize the strategies to constrain and determine γ with

the help of B± → π±K, π0K± decays, which were re-
cently pointed out by Neubert and Rosner [18,19]. This
allowed us to investigate the sensitivity of these methods
to the various assumptions made in [18,19], in particular
to the impact both of rescattering processes of the kind
B+ → {π0K+} → π+K0 and of non-factorizable SU(3)-
breaking effects. It would be indicated experimentally that
final-state-interaction processes play in fact an important
role, if future experiments should find a sizeable value of
the CP asymmetry arising in B± → π±K, or a significant
enhancement of the B± → K±K, Bd → K+K− branch-
ing ratios with respect to their “short-distance” expecta-
tions. In this case, our completely general formalism would
allow us to take into account the rescattering effects with
the help of the strategies proposed in [6,7], making use
of B± → K±K decays. Unfortunately, it is not possible
to control also non-factorizable SU(3)-breaking effects in
a similar manner. However, we are optimistic that future
experimental data will also provide valuable insights into
SU(3) breaking.

We have also proposed a new strategy to probe the
CKM angle γ with the help of the neutral decays Bd →
π0K, π∓K±, requiring a time-dependent analysis of Bd →
π0KS. Although this method is more difficult from an ex-
perimental point of view, it is theoretically cleaner than
the B± → π±K, π0K± approach. The point is that final-
state interaction effects can be taken into account in a
clean way with the help of the direct and mixing-induced
CP-violating observables of the decay Bd → π0KS. How-
ever, the uncertainties related to non-factorizable SU(3)-
breaking corrections are similar to those affecting the B±
→ π±K, π0K± strategy.

In addition to an accurate measurement of all charged
and neutral B → πK modes, an analysis of the decay
Bs → K+K− would be very useful, allowing a variety of
ways to combine its observables with those of the B → πK
decays to probe the CKM angle γ and to obtain insights
into electroweak penguins. The former decays can already
be studied at the e+– e− B-factories (BaBar, BELLE,
CLEO III), which will start to operate at the Υ (4S) res-
onance in the near future. In fact, the CLEO collabora-
tion has already reported the first results for these modes.
On the other hand, dedicated B-physics experiments at
hadron machines appear to be the natural place to ex-
plore Bs decays.

Let us now critically compare the virtues and weak-
nesses of the various approaches discussed in this paper.
An important advantage of the B± → π±K, π0K± and
Bd → π0K, π∓K± strategies in comparison with the one
using the decays B± → π±K and Bd → π∓K± is that
the parameters r(c,n) can be determined with the help of
the decay B+ → π+π0 by using only the SU(3) flavour
symmetry, and that the electroweak penguins can be the-
oretically controlled by again making use of SU(3) flavour
symmetry arguments. The theoretical accuracy is only
limited by non-factorizable SU(3)-breaking corrections,
which cannot be treated in a quantitative way at present.
Although the SU(2) isospin symmetry is sufficient in the
B± → π±K, Bd → π∓K± strategy to relate these decays



108 A.J. Buras, R. Fleischer: A general analysis of γ determinations from B → πK decays

to each other, “factorization” or “colour suppression” has
to be employed to fix the parameter r, and it is more
difficult to control the electroweak penguins theoretically.
Their importance is strongly related to rescattering effects
and to the question of “colour suppression” in B → πK
decays, which can be probed, for instance, through the
CP-violating observables of the decay Bd → π0KS.

Let us emphasize that the decays B± → π±K and
Bd → π∓K± may well play an important role to probe γ,
even if the present central value of R = 1 should be con-
firmed by future data. Although the combined branching
ratios of these modes would imply no useful constraints
on γ in this case, as soon as CP violation in Bd → π∓K±
decays is observed, contours in the γ–r plane can be fixed,
allowing the extraction of γ. In our illustrative example,
we found contours with the interesting feature that the
extracted value of γ is very insensitive to the value of r.
Consequently, in such a fortunate situation, this strategy
to determine γ would not be weakened by the fact that
the uncertainty of r may be larger than that of rc. Clearly
time will tell whether such a fortunate situation is in fact
realized in nature.

An accurate measurement of B-meson decays into πK,
ππ and KK final states is an important goal for future
dedicated B-physics experiments. The physics potential
of these modes is very rich, allowing several strategies to
probe CKM phases and to shed light on the issue of rescat-
tering effects and electroweak penguins. Also certain Bs
decays are very useful in this respect. We are optimistic
that the B-factory era, which is just ahead of us, will lead
to many interesting and exciting results.
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Appendix: controlling electroweak penguins
in the α determination from B → ππ decays

In this appendix, we point out that a theoretical input
similar to (66) allows us to take into account electroweak
penguin topologies in the determination of the CKM angle
α with the help of the Gronau–London method [35], using
the B → ππ isospin relation

A+− +A00 = A+0 (94)

with

A+− ≡ A(B0
d → π+π−), A00 ≡

√
2A(B0

d → π0π0),

A+0 ≡
√

2A(B+ → π+π0). (95)

We have illustrated this approach in Fig. 13, where

B+− ≡ e−i2β A+−, B00 ≡ e−i2β A00,

B−0 ≡ e−i2β A+0, (96)

2α

Φ

A
A

A

+-

+-

00 00

-0

+0

Pew

B

B

B

T + C

Fig. 13. Determination of the CKM angle α by means of B →
ππ isospin relations in the presence of electroweak penguins

and β = 180◦ − α − γ denotes another angle of the uni-
tarity triangle. The amplitude A+0 can be decomposed as
follows:

A+0 = − [ (T ′ + C ′) + P ′
ew ] , (97)

where the b̄ → d̄ amplitudes T ′ + C ′ and P ′
ew are defined

to be proportional to the CKM factors λ(d)
u and λ

(d)
t , re-

spectively. This definition of P ′
ew is useful in the present

case, as it gives [17]

P ′
ew = e2iβ P ′

ew . (98)

Note that the amplitudes (T+C)b̄→d̄ and (Pew)b̄→d̄ in (66)
are defined to be proportional to λ

(d)
u and λ

(d)
c , respec-

tively, which is the appropriate definition for the strate-
gies to probe the CKM angle γ discussed in this paper.
Proceeding as in Sect. 2.2 and using a similar theoretical
input, we obtain (see also [3])(

P ′
ew

T ′ + C ′

)
b̄→d̄

=
3
2

[
C9(µ) + C10(µ)
C1(µ) + C2(µ)

] |Vtd|
|Vub| e

iα

= − 1.3 × 10−2 × |Vtd|
|Vub| e

iα. (99)

In contrast to (48), the SU(2) isospin symmetry suffices
to derive this expression, i.e. no SU(3) flavour symmetry
arguments have to be used to this end.

With all this information at hand, the determination
of α from B → ππ decays in the presence of electroweak
penguins can be accomplished as follows:

1. The two triangles represented by the thick solid and
dashed lines can be determined by measuring all B,B
→ ππ branching ratios, while their relative orientation,
i.e. the angle Φ, can be fixed by measuring mixing-
induced CP violation in the mode Bd → π+π− (a de-
tailed discussion can be found in [17]).

2. The two squashed triangles in Fig. 13 represent the re-
lation (97) and its CP conjugate, multiplied by e−i2β .
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The inspection of these triangles, together with the
phase in (99), tells us that P ′

ew lies on the line that bi-
sects the angle between the amplitudes A+0 and B−0.

3. Since (99) implies |P ′
ew| � |T ′ +C ′|, we have, to a very

good approximation:

|P ′
ew| = 1.3 × 10−2 × |Vtd|

|Vub| |A+0|, (100)

where |A+0| is obtained from BR(B+ → π+π0). Equa-
tion (100), in combination with the minus sign in (99)
and the two previous steps, allows us to complete the
construction shown in Fig. 13, and to determine the
CKM angle α.
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